Cereb Cortex 1995 Sep-Oct;5(5):391-409
Istituto di Fisiologia umana, Universita di Cagliari, Italy.
How is spatial information for limb movement encoded in the brain? Computational and psychophysical studies suggest that beginning hand position, via-points, and target are specified relative to the body to afford a comparison between the sensory (e.g., kinesthetic) reafferences and the commands that generate limb movement. Here we propose that the superior parietal lobule (Brodmann area 5) might represent a substrate for a body-centered positional code. Monkeys made arm movements in different parts of 3D space in a reaction-time task. We found that the activity of area 5 neurons can be related to either the starting point, or the final point, or combinations of the two. Neural activity is monotonically tuned in a body-centered frame of reference, whose coordinates define the azimuth, elevation, and distance of the hand. Each spatial coordinate tends to be encoded in a different subpopulation of neurons. This parcellation could be a neural correlate of the psychophysical observation that these spatial parameters are processed in parallel and largely independent of each other in man.